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ABSTRACT 
 

Surface reconstruction for 3D visualization requires both a segmentation of the image and at the least, a conversion of 
the data from an image format to a shape format.  While the discrete pixel locations of the segmentation may be 
satisfactory for quantitative purposes, it is  usually important for visual quality to remove such voxelation in the shape 
data prior to rendering.   Removal of such voxelation, depending on the specific segmentation technique, may be 
problematic, involving excessive interpolation prior to segmentation or the application of pure surface smoothing in 
which important image information may be disregarded.  An algorithm is presented here to address these problems.  In 
this algorithm, a smoothly varying threshold level is determined such that that level falls within the interpolated 
intensity ranges of all the segmentation-boundary voxels.  This threshold information is extrapolated to voxels adjacent 
to the boundary and then used to correct or normalize the original image in the vicinity of the boundary. Provided that 
the directionality of the contrast between the interior and exterior of the boundary is sufficiently consistent throughout 
the boundary, an isosurface of this normalized image is guaranteed to exist which falls within the voxels of the 
segmentation boundary.  
 
Keywords :  Surface reconstruction, Segmentation, Watershed, Marching-cubes algorithm, Surface aliasing, 
Interpolation 

 
 

 
1. INTRODUCTION 

 
Surface reconstruction, the localization and representation of the boundary from 3D images is akin but not equivalent 
to segmentation or the classification of points within the image.  While the location of boundaries are implicit or 
sometimes explicit within a given segmentation method, conventionally, the sub-voxel location and complexity of the 
boundary are not. Thus, in the segmentation, with certain exceptions including the Marching-Cubes (MC) Algorithm1 
and the deformable-model class of segmentation2, without further processing substantial  pixelation or aliasing of the 
boundary will exist which presents serious problems for visualization, shape characterization for finite element 
analysis 3,4,5,6  for example and even conceivably volumetry7 . Thus, in general, methods of surface-reconstruction are 
needed to accommodate the wide range of potential segmentation methods including watershed-based8,9  clustering-
based10,11 and even manual methods♣12 still quite important for clinical and experimental purposes.     
 
This problem has been previously described simply as an interpolation problem; that the surface derived from the 
segmentation will have adequate resolution provided the resolution of the image is sufficiently increased prior to the 
segmentation.  Thus, in addition to the conventional interpolative methods13, new methods which particularly address 
the large inter-slice dimension have been proposed14,15,16.  However, this approach may be limited due to the 
dramatically increased memory requirements and computation time needed to achieve a sufficient increase in 
segmentation resolution.   
 

                                                                 
∗  Correspondence: Email: pyim@fourier.cc.nih.gov  
♣ The problem of surface reconstruction has encompassed the problem of the determination of the connectivity 
between 2D contours.  This topic is not  addressed in this paper. 



 

 

Another common approach to surface reconstruction from segmentation is to simply perform a spatial smoothing of the 
literal segmentation boundary17,18.  Such methods may produce visually or even quantitatively acceptable results but do 
not fully exploit the underlying image intensity information and generally cannot distinguish true roughness of the 
surface from surface aliasing. 
 
Looking at this problem from a different point of view, very effective means of determining isosurfaces from image 
data have been developed which identify locations or vertices on the surface directly from the image data in an 
interpolative manner the most well-known technique of which is the MC algorithm1 but in general the problem can be 
expressed as the solution to the equation19: 
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Where I(x,y,z) is the interpolation function of the image intensities and T is some constant threshold value.  The 
application of this methodology  in quantitative medical image analysis is limited, however, since the determination of 
a threshold value for the boundary of an object may be problematic and often no one threshold value is valid 
throughout the boundary of any given object due to a variety of artifacts of potential artifacts for MRI20  in both and x-
ray computed tomography21.   Removal of such variability will be the essence of our methods presented here with a 
new emphasis placed on the correspondence between the resulting isosurface and a given segmentation.    
 
Several methods have been proposed to directly remove variability or "inhomogeneity" from the image, particularly for 
MRI.   Perhaps the most generic of these methods is that of Dawant22  et al whereby points within various parts of the 
image known to be isointense (being of the same tissue type) are identified by the user.  From that information a 
surface is fit which provides correction factors for the entire image.  Various methods have subsequently been 
developed to provide greater automation which include a high-pass filtering method23 and methods whereby the 
corrections are integrated with specific segmentation methods24,25.   Once the intensity corrections have been applied to 
the image, in principle, threshold levels exist at which valid isosurfaces of the various tissue types can be constructed.  
Alternatively,  this  approach to surface reconstruction could be considered as a generalization of (1): 
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Where the threshold level, T(x,y,z), is now a function of location. 
 
In this paper, we present a new method of determining this threshold function within the vicinity of the segmentation 
boundaries which is consistent with any boundary independent of the segmentation method.  This method has 
application on a relatively wide class of boundaries where there is uniform directionality of the intensity contrast along 
the boundary. 
 
 

2.  Formulation of the Problem 
 
Segmentation methods which classify pixels or voxels into regions and/or boundary points are inherently ambiguous at 
the boundaries.  In segmentation methods such as the watershed where a boundary of finite thickness is produced 
between adjacent regions, the exact location of the dividing line between two tissue types, for example, may fall 
anywhere within the finite thickness of the boundary. This problem is not avoided in segmentation methods where 
adjacent regions abut one another with no intervening boundary; this type of classification should be interpreted to 
mean that the classification of points along the boundary is best classification of the given point but that in reality 
points along the boundary are, to various extents, part of both regions.  
 
The various types of boundaries formed from segmentation can  be construed to be the range on a dividing line or 
dividing surface between the regions.  This is most straightforward in the case of a 6-neighbor 3D boundary or a 4-
neighbor 2D boundary as shown in figure 1(c).   At the least, this segmentation boundary implies that the dividing line 
such as an isointensity line shown in figure 1(b) between the two regions falls within the finite thickness of that 
boundary region.   
 



 

 

The situation is less well defined for boundary regions with lower connectivity such as for the 27-neighbor boundary in 
3D or the 8-neighbor boundary in 2D which is shown in figure 1(d). In this case, not only should points within the 
boundary region be considered to be a mixture of the two adjacent regions but also some points within the classified 
regions adjacent to the boundary since in this case, some points within the classified regions are directly adjacent to 
points within the other classified region.  Specification of the range over which the dividing line could be located in 
this case is more arbitrary in this case.  Strictly speaking, two possibilities for determining the range or region of the 
boundary would be (a) all points within the boundary plus all points of either classified region which are adjacent to 
points in the adjacent classified region or (b) all points in the boundary plus some portion of the classified points which 
are immediately adjacent to the other classified region.  However, a reasonable alternative which is used in our 
methods to be described later, is to simply ignore the incompleteness of the 27 or 8-neighbor boundary and  consider 
that the boundary line must pass through all points in the boundary region but may also pass through points outside of 
the boundary region. Hopefully, once such constraint is placed on the dividing line, the location of the dividing line 
outside the boundary region would only be at intermediate points immediately adjacent to the boundary.   A similar 
interpretation can be made of a segmentation where there is no explicit boundary such as is shown in figure 1(e). 
 
Once a boundary of finite thickness has been defined based on the segmentation, a "variable-intensity" surface can be 
constructed so as to be confined to lie within the thickness of the segmentation boundary.  As will be discussed  in 
detail in the next section, the surface will generally fall within the segmentation boundary at a given point if the 
threshold function T(x,y,z) at that point falls within the limits of the interpolation function I(x,y,z) for the given 
boundary voxel.  A method is presented which determines T(x,y,z) which varies in the smoothest possible way along 
the boundary. 
 
 

3. Algorithm 
 
Determination of a threshold level which both falls within the intensity ranges of each boundary voxel and varies 
smoothly from one voxel to the next is relatively straightforward.  First of all, the range for the discrete threshold 
function Ti within a given boundary voxel is between the minimum and maximum of the trilinear interpolation function 
I(x,y,z)  within the voxel: 
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Where (x,y,z)  is the location at the center of the given boundary voxel or boundary face, i, for a segmentation without 
an explicit boundary region. 
We have implemented a smoothing whereby the value of the threshold at each point ideally is the average of its 
immediate neighbors. 
 

∑=
=

n

j
ji T

n
T

1

1
,  Tj is one of n  immediate  neighbors of Ti .      (4) 

  
This condition of the threshold levels is analogous to that of the vertical positions of point objects in a mechanical 
system at equilibrium in which the point-objects are constrained to move only in the vertical direction and are 
interconnected to their neighbors by springs which pull with a force proportional to their vertical displacement as 
shown in figure 2.  If displaced from it's equilibrium position, the point objects in the system will experience a force 
proportional to the displacement of a given object from its current equilibrium position.  Provided that the motion of 
the objects is sufficiently damped it will obey the differential equation: 
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The solution to this equation can be obtained numerically by finite differences: 
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In our implementation, the constant factor K∆t was set to 0.25 and the calculation was performed for 10 iterations and 
the Ti 's were initialized to the mid-point of the intensity ranges of each voxel, 1/2(Tmax,i + Tmin,i).  
 
Two methods of extrapolation of the threshold level to adjacent voxels are:  
(a) Once the threshold level was determined for each of the boundary points it was extended to neighboring voxels on 

a "nearest-neighbor" basis; all voxels with 6-neighbor adjacency to the boundary were assigned the threshold of 
the adjacent boundary voxel.  Those new voxels are then considered part of the boundary and the process is 
repeated once more.  This method was used for the cerebral ventricle surface reconstruction. 

(b) The voxels 26-neighbor adjacent to the boundary have a threshold level which is a weighted average of the 
threshold levels of all it's neighbors within the boundary with the weight being the inverse of the distance.  This 
method was used for the thoracic aorta surface reconstruction. 



 

 

 
 a. b. 
 
 

 
 c. d. 
 
 
 

 
 e. 
 
 
Figure 1.  Types of segmentation boundaries. Classification-type segmentation of a given image may produce various 
types of boundaries. A test image of two regions is created at low resolution with the intensities along the boundary 
determined by the degree to which each pixel is occupied by each of the two regions. Then that image is  blurred by a 
2D gaussian with a space constant of 1 pixel unit with a cross section shown in (a).  The cross-section of a MC 
isointensity surface is shown in (b). Various classification segmentation are shown including that of a  4-neighbor 
boundary   (c) an 8-neighbor boundary  (d) and without an explicit boundary  (e).      
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Figure 2. Mechanical analogy of threshold determination algorithm.  The threshold value at each point on the 
segmentation boundary is an object which is constrained to move only in the vertical direction and within fixed limits, 
which are the maximum and minimum values of the interpolated image intensity within the bounds of the given voxel.  
Springs attach each points to its neighors (only two neighbors shown here for purposes of illustration) which pulls with 
a force proportional to their vertical displacement.  The  nodes are initialized to the midpoints of the intensity ranges (a) 
and move towards an equilibrium position (b). 
 
 
 

3. Results  
 
3.1 Test images  
Test images were created of a cylinder and a sphere at low resolution with  intensities at the boundaries of the cylinder 
proportional to the degree to which they were occupied by the cylinder to simulate the partial volume effect. That 
image is added to a ramp function whose contrast across the diameter of the object is 2/3 that of the cylinder/sphere-
background contrast.  The resulting cylindrical image is blurred with a 2D gaussian with a space constant of 1.0 voxels 
and the resulting sphere image is blurred with a 3D gaussian with a space constant of 1.0 voxels..  A cross section of 
cylinder image is shown in (a) and is comparable to the sphere image through its center.  The image was then 
segmented with the Interactive Meyer Watershed whose boundary has 26-neighbor connectivity, initialized by one 
point at the center of the cylinder and one distant from the cylinder. 
 
The segmentation boundaries of the cylinder  and the sphere image were the same for the center slice and was 
symmetric but highly pixelated as shown in figure 3. The variable-intensity surface reconstructions are good 
approximations to the circular shape from which the images were generated.  For the surface reconstruction from the 
image of the cylinder, the cross-section of the reconstructed surface is slightly "squared" with the "corners" of the 
reconstructed cross-section at almost the same location as that of the true circular cross-section while the "sides" of the 
reconstructed cross-section are displaced inwards by about 1/3 voxel.  On the other hand, the cross-section of the 
surface reconstruction of the image of the sphere has extremely little distortion although it is uniformly displaced 
inwards by about 1/4 voxel from the true location.   



 

 

 

 a. b. 
 

c. d. 
 
Figure 3.  Performance of surface reconstruction on test image.  A test image was created of a cylinder and a sphere at 
low resolution with a intensities at the boundaries of the cylinder/sphere proportional to the degree to which they were 
occupied by the cylinder/sphere to simulate the partial volume effect. That image added to a ramp function varying in 
the vertical direction and then blurred by convolution with a gaussian  of space constant 1.0 voxels (2D blurring for 
cylinder image, 3D gaussian blurring for sphere image).  A cross section of the cylinder image is shown in (a) which is 
comparable to that of the midsection of the sphere image.  The image was then segmented with the interactive Meyer 
Watershed initialized by one point at the center of the cylinder and one distant from the cylinder/sphere.  The 
segmentation boundary at the mid-section was the same for both images and is shown as the black pixels in (b) with the 
boundary of the cylinder/sphere from which the image was derived shown as the white trace.   The variable-intensity 
surface reconstruction for the cylinder and the sphere image are shown in (c) and (d) respectively. 
 
3.2 Thoracic aorta 
An image of the lumen of the thoracic aorta obtained by contrast-enhanced magnetic resonance angiography in a 
patient with familial hypercholesteremia26 with 2-mm thick 50%-overlapping slices in a 256x160 matrix in a 28-cm 
field of view, zero-fill interpolated out-of-plane 2x and in-plane to 256x256 dimension.  The image was segmented  by 
the Interactive Meyer Watershed with 26-neighbor boundary connectivity  with 6x6x2 markers placed about a point at 
the center of the aorta and a point distant from the aorta representing respectively the interior and exterior of the aorta.  
The entire aorta within the field of view was correctly classified while segmentation of the branches of the aorta was 
somewhat variable.  A 150x256x60 region of the image was processed on the SGI octane (195 MHz) requiring 4 
minutes for the watershed segmentation, 26 seconds for the image normalization, 44 seconds for the Marching Cubes 
isosurface reconstruction and 34 seconds for the initial surface rendering.   



 

 

 
a.              b. 
 
Figure 4. Surface reconstruction of magnetic resonance angiogram of aorta.  Meyer watershed initialized with square 
patches indicating the interior and exterior of the vessel.  Cropped version of original image shown in maximum 
intensity projection (MIP) form is shown in (a) with watershed initializations shown as high intensity regions.  Results 
of variable-intensity surface reconstruction shown in (b). 
 
 
Segmentation and surface reconstruction was preceded by convolution of the image with a gaussian of space constant 
1.0 to minimize the effects of image noise.  The 3D surface is shown in figure 4. 
 
3.3 Cerebral ventricles  
One sample cerebral MR image from a brain study was used for testing as  acquired and segmented into grey-matter, 
white matter and cerebral spinal fluid (CSF) as described in ref. 10.  In this case no explicit boundary region is produced 
by the segmentation but boundary "voxels" were considered to 1/2 of the voxel to either side of a face of the boundary 
with the interpolated intensity ranges determined accordingly and the adjacency of the points was determined from that 
of the boundary faces.  The image was smoothed by convolution with a gaussian of space constant 1.0 prior to the 
surface reconstruction.  Normalization of the image required 2 minutes 25 seconds, the Marching Cubes isosurface 
reconstruction required 3 seconds and the initial surface rendering required 8 seconds all on the SGI Onyx Workstation 
which primarily differs from the Octane workstation (used for the aortic reconstruction) for these purposes only in its 
greater memory size. 
 
 
 
 
 



 

 

 
 a. b. 
 

 
 c. 
 
 
Figure 5.   Surface reconstruction of ventricles of brain.  Surface reconstruction method applied to brain images (c) 
acquired and segmented as in ref 10  with representative slice shown in (a) and  segmentation of that slice shown in (b) 
with the ventricular region indicated by the arrow.  
 
 
 
 
 
 
 

 



 

 

4. Discussion 
 

4.1 Completeness of surface 
The methods described above do not guarantee that a closed surface will be produced for any segmentation of a given 
object in any given image.  Rather, this method is restricted to cases where the directionality of the contrast between 
the interior and exterior of the object is generally uniform throughout the boundary of the object;  ie. voxels on the 
interior of the boundary are high relative to adjacent voxels on the exterior side of the boundary or vice versa.  The 
exact conditions for production of the isosurface at any given point in the boundary are slightly more complicated as 
will be discussed below. 
 
Consider the formulation of the surface based on a boundary of single-voxel thickness with six-neighbor connectivity 
as in figure 1.  The condition for the existence of a closed  isosurface which falls completely within the thickness of 
that type of boundary is that no continuous path through the interpolated image intensities penetrates the boundary 
which is either entirely above or below the isosurface intensity value.  Several possible configurations of boundary 
intensities are shown in figure 6 where three cases are shown including the case where the surface will definitely have 
no holes or leaks,   where the surface will definitely have a leak and  a third case where additional information is 
required to make the determination, all assuming trilinear interpolation.  The MC algorithm itself  is not guaranteed to 
produce the correct results for the third case but subsequent research has provided methods for doing so.16, 27,28 
 
 
  
 
 
 
 
 
a. 
 
 
 
 
 
 
 
 
b. 
 
 
 
 
 
 
 
 
c. 
 
 
 
 
 
 
Figure 6.   Conditions for the successful generation of a closed surface from the segmentation-boundary normalization 
method.  In (a) the boundary pixels (shown as the dark region) are clearly separate a high from a low intensity regions. 
In (b) there is clearly a gap in the boundary. In (c) there is a reversal in intensities in the boundary but is moderate 
enough not to cause a gap in the boundary. 
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4.2 Accuracy of threshold determination 
Given N estimates of a threshold intensity expressed in terms of intensity ranges, and assuming, for simplicity, that 
those ranges are all of equal size, the degree of overlap of those intensity ranges and thus the precision of the 
cumulative estimate of the threshold intensity are statistical in nature.     Symbolically, for the set of points, P  each 
with an intensity range Tmin,i to Tmax,i: 
 

ii TTTPi max,min,, <<∈∀          (7)  

 
and the size of the intensity range, R is given by:  
 

ii TTR min,max, −=           (8) 

 
For each of the N points, the intensity range has a random offset from the true threshold level in the range of 0 to Ri.   
 

RTT iii <<−= δδ 0,max,         (9) 

 
and percentage-wise, the size of the overlap of the intensity ranges of any two points is: 
 

RS ji /||1 δδ −−=           (10)  

 
So, for example, for an overlap of 10% or less between two points: 
 

jijiR δδδδ >−≤ |,|9.0         (11) 

 
which is shown graphically in figure 7(a) which will occur only 1% of the time as is calculated as a ratio of areas in the 
graph.   Determination of the occurrence rate of such an overlap size amongst a greater number of points is more 
complex but a conservative estimate can be made.  Rather than the specification of (11) assume that the following 
criteria must be true to produce a 10% overlap: 
 

orRandR ji δδ <> 95.005.0        (12) 

ij RandR δδ <> 95.005.0  

 
which is described in the graph of figure 7(b) and gives a conservative estimate of the probability.  Usefully, this 
description lends itself to a determination of the probability of a given overlap for N points.     
 
Consider first what is the probability that δ of at least one of the N points is less than 0.05R.  That probability is just the 
complement of the probability of none of the points having δ less than 0.05 which is  given directly by the binomial 
distribution. If the probability of  δ less than 0.05 for a single point is p and the variable representing the number of 
points with δ less than 0.05 is X: 
 

NNpXobXob 95.01)1(1)0(Pr1)1(Pr −=−−==−=≥      (13) 
 
Given that the probability is the same for the outcome Y, of at least one point with δ greater than 0.95  and assuming 
that the outcomes X and Y are relatively independent, the combined probability is given by: 
 

2)95.01()1(Pr)1(Pr)1(Pr)1|1(Pr NXobYobxobXYob −=≥≥≈≥≥≥    (14) 
 



 

 

For N=60, this probability is 0.91. In other words, given 60 points estimating a threshold level, there is at least a 91% 
chance that the overlap or the precision of the threshold estimation will be less than 10% of the intensity range R. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a.            b. 
 
Figure 7.  Probability of less than 10% overlap between two intensity ranges of size R,  offset from a common point by  
δ1  and  δ2  respectively, which range, with uniform probability,  from 0 to R .  Less  than 10% overlap between the two 
intensity ranges is equivalent to the condition:   |δ1 - δ2| > 0.9R  which is true for the darkened region in (a) which in 
this case is a 1% probability.  A conservative approximation to this condition which will allow for calculations for 
multiple intensity ranges, is for both δ1 < 0.05R and δ2 > 0.95R or vice versa  which is true for the darkened region in 
(b) which is a 0.5% probability.   
 
 
 

5. Conclusions  
 
In many cases,  problems of segmentation, regarding the classification of whole voxels in the image, overwhelm the 
surface-reconstruction problem which generally relates to the sub-voxel resolution of the boundaries.  However,  such 
surface reconstruction may be important for both the qualitative and quantitative interpretation of an image.  In this 
paper we formulated the  surface-reconstruction problem as a process independent of segmentation; whereas the 
segmentation process produces approximate boundaries at the resolution of the voxel size,  the surface-reconstruction is 
concerned with the exact localization of the surface.  We have proposed here a method which under relatively simple 
conditions of the interior-exterior contrast is entirely derived from and compatible with the segmentation. 
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